
A holistic approach to DevOps: Our conquest, learnings, and experiments
© 2021 Nagarro

A holistic approach to DevOps
Our conquests, learnings, and experiments

2A holistic approach to DevOps: Our conquest, learnings, and experiments
© 2021 Nagarro

Executive Summary

01 Introduction: Embracing DevOps at the core

02 Building an emergent and adaptive way of working

 2.1 Adopt a team-first approach

 2.2 Identify Value Streams

 2.3 Accept cognitive capacity as a limiting factor

 2.4 Foster developer experience

 2.5 Enable teams

Conclusion

References

About the Authors

Table of Content

3A holistic approach to DevOps: Our conquest, learnings, and experiments
© 2021 Nagarro

Today, embracing DevOps is more than applying certain practices and
principles. Like everything else, it has evolved into a culture that combines
management practices in lean and agile principles with technical practices
in continuous delivery. Having inculcated a DevOps culture in our DNA,
we at Nagarro bring you certain guiding structures and learnings that are
a result of experiments using existing ideas and concepts. Let’s dive
deeper into these frameworks to discuss and ultimately improve the ways
of working by creating better value during these fast-moving times.

More than a decade ago, when DevOps was first on everyone's radar, a shift in
attitude started to take place that essentially propelled the ad-hoc waterfall
or a non-agile mindset to realign. Lean and agile ways of working were on
the rise, but collaboration across organizations’ hierarchical boundaries with
diverse and (nowadays) non-combinable objectives was soon to be forgotten.

After a legendary appearance by John Allspaw and Paul Hammond at the
Velocity conference in 2009, where they presented "10+ Deploys per Day: Dev
and Ops Cooperation at Flickr", the first official DevOpsDays conference was
held in Belgium, organized by Patrick Debois. He was an IT consultant with
responsibilities in testing. And two years prior to this, he was caught between
the worlds of development and operations and needed to find a solution that
would allow him to complete a data center migration in the best possible way.
It was a problem that could not be solved simply by moving chairs around.

Many evolutionary steps later over the past ten years, the realization has
dawned that the silos were not just about development and operations.
Information security, which until then had been mostly treated poorly, was
approached, and brought on board alongside testing and quality assurance
in general. It was only at the end of 2017 that Forrester proclaimed 2018 the
year of enterprise DevOps. It was assumed that more than 50% of enterprises
worldwide had already completed its DevOps transformation or were in the
process of doing so.

Today, DevOps stands for organizational culture and business leadership that
combines management practices in lean and agile principles with technical
practices in continuous delivery. As the DevOps ecosystem evolved, we at
Nagarro ingrained DevOps in our DNA quite early on. We remain committed
to supporting our clients in their DevOps transformation and make it as
seamless as possible. In fact, over the past couple of years, driven by our
thinking breakthroughs values, we have been experimenting to see what
new ideas and concepts can help us combine a fast-moving industry and the
quality standards we uphold for ourselves.

Executive Summary

01. Introduction:
Embracing DevOps at
 the core

4A holistic approach to DevOps: Our conquest, learnings, and experiments
© 2021 Nagarro

As DevOps evolved and the emphasis on management practices
increased, we identified a few guiding principles or helpful mental models
that are widely applicable. These have emerged over the years to help
reason and understand how organizations can better deliver software
products. While these principles may not be ready-to-use answers
or blueprints, they do function as a helpful framework to discuss and
ultimately improve the ways of working by creating better value, faster,
safer, and happier.

These guiding principles are:

2.1 Adopt a team-first approach – Acknowledge that efficient delivery in
complex environments can only be achieved with high-performing
and stream-aligned teams.

2.2 Identify Value Streams – Consider orientation around value streams
and business domains as a primary force when designing potential
team structures.

2.3 Accept cognitive capacity as a limiting factor – Teams have a limited
cognitive capacity that, in many situations, is the primary constraint for
software delivery.

2.4 Foster developer experience – Focus on a good developer experience
enables efficient delivery

2.5 Enable teams – Enable teams to work as autonomously and as
self-reliantly as possible to reduce congestions and improve the
overall flow, perhaps one of the most essential responsibilities of an
organization.

Among the most difficult and yet easy to understand areas of change in
behavior and thinking is to establish small, long-lasting teams at the center
of everything we do. This “team-first thinking” is also an essential aspect in
“Team Topologies”, published by Matthew Skelton and Manuel Pais. Putting
so much focus on teams also implies that we need to foster an environment
to function correctly. However, we continue to see harmful practices
and limiting organizational structures impeding teams from working
effectively in many cases. For instance, some scenarios may include highly
interdependent component teams, persistent knowledge silos, cognitive
overload caused by too many different responsibilities of teams, and
insufficient or unclear interfaces between teams or departments.

Many of our projects with our clients are not greenfield projects. In several
cases, we deal with legacy systems, middle management with clear
expectations, and team structures already in place. These client situations
are complex domains that must deal with unknown-unknowns.

02. Building an emergent
and adaptive way of working

2.1 Adopt a team-first
approach

5A holistic approach to DevOps: Our conquest, learnings, and experiments
© 2021 Nagarro

Fig 1: Orders of Knowledge: Adapted from Donald Rumsfeld

There is emergence. There is no such thing as one-size-fits-all for
organizational DevOps. There is no silver bullet. There is no one way, no
DevOps-in-a-box that optimizes outcomes in all contexts. There is a need
to focus on the benefit hypothesis and fast feedback to maintain flexibility
and pivot to achieve the desired outcomes optimally.

Establish sustainable ways of working: Two concepts

Besides the general team-first thinking, we found two concepts beneficial
to identify and communicate sustainable ways of working when designing
or optimizing organizational structures:

� Cynefin Framework
� Conway's Law

Cynefin Framework

The Cynefin Framework, developed by Dave Snowden in 1999, is a
conceptual framework used as a decision-making aid. It helps us
understand the context in which we are operating. Cynefin provides five
decision contexts or domains:

1. Simple
2. Complicated
3. Complex
4. Chaotic
5. And a center of disorder

6A holistic approach to DevOps: Our conquest, learnings, and experiments
© 2021 Nagarro

Fig. 2: Cynefin Framework

The domains provide a sense of place to analyze behavior and make
decisions. The areas on the right, simple and complicated, are ordered.
The cause and effect are known or can be discovered. The areas on the
left, complex and chaotic, are disordered. The cause and effect can either
be inferred retrospectively or not at all. This context, wherein decisions are
made, is constantly changing.

The solutions to problems in the simple domain are obvious, and thus a
correct approach is “sense-categorize-respond” by applying established
and well-described best practices. There is no deeper analysis,
experience, or expertise needed to categorize and respond. For various
reasons, we sometimes persuade ourselves (or are persuaded) to falsely
believe a problem is located here. But often, the more critical issues need
a fundamentally different approach.

The complicated domain, where we are facing known-unknowns, is the
ideal place for lean ways of working. For instance, the "right" or "correct"
answers can be found in the Simple domain; however, additional expertise
is required to identify the answer. Repetitive work is well-known and
understood. It has been done many times before and requires expertise
(e.g., installing a server in a data center). We know what to do when
something goes wrong. It's deterministic, and the relation between cause
and effect can be identified.

When dealing with sociotechnical systems, a direct relationship between
the cause and effect can hardly be analyzed but only be deduced
retrospectively. It is essential to state that this limitation is nothing that can
be lifted by spending more time on analysis – it is inherent to problems in
the complex domain.

Software in the digital age is not about writing the same code a thousand
times. Often, the code is written once and executed a thousand times.
Product development is unique; it has never been done before, at all or
in context. This is the sweet spot where we use agile practices to keep

7A holistic approach to DevOps: Our conquest, learnings, and experiments
© 2021 Nagarro

evolving. In complex environments, there are no best practices and
success is based on regularly analyzing the status quo and reflecting and
adapting the way we work.

Conway's Law

An observation named after the US-American computer scientist Melvin
Edward Conway, this law is based on the concept that the structures of
the systems are predetermined by the organization’s communication
structures. Ruth Malan translated Conway's Law into a modern version
in 2008 and looked at it from a different perspective. She stated, "If the
architecture of the system and the architecture of the organization are at
odds, the architecture of the organization wins."

So, the team structures and the communication between teams provide
the foundation for successful product development. The team structure
already gives us the first indication of whether a project will possibly be
successful or could even be headed for failure if, for example, the system's
architecture, the teams try to fight against the organization's architecture.
The organization is compelled to produce designs that reflect or imitate
the organization's real, on-site communication structure. This has
significant strategic implications for any organization that designs and
builds software systems, whether internally or through third parties.

For example, going back to the issue of silos, let’s assume an organization
is arranged in functional silos including Quality Assurance, Database
Administration, and Information Security. It is very unlikely that this
organization will ever produce a software system with an underlying
well-designed architecture for continuous flow without major handoffs
between these silos. Moreover, the long release cycles already seem to be
a predefined condition.

Now, let’s consider another instance where our goal is to transform a
monolithic application structure into a microservice architecture, as
shown in Figure 3. The probability is high that we will not be able to create
a modular service architecture with an organizational structure that
fosters large co-located teams. In self-critical terms, it is a difficult (almost
impossible) mission not to reintegrate communication channels from the
real world into the system architecture.

8A holistic approach to DevOps: Our conquest, learnings, and experiments
© 2021 Nagarro

Figure 3: Conway’s Law

Our observations

At Nagarro, we work in small agile units designed to bring an end-to-end
mindset - called feature teams. These types of teams are entirely focused
on the client's needs but always follow the DevOps mentality of "You build
it, you run it, you own it."

Accepting and engaging the fact that such teams are often faced with
challenges in the Cynefin’s complex domain and acknowledging the
homomorphic force often results in Conway’s Law paving the way for
more open discussions and identification of the most expedient solutions.
Here, homomorphic means "having the same shape," so the organizational
structure and system architecture remain in sync.

However, even as these two concepts help design an organization, they
are only the first step towards a sustainable and continuous flow of value.

Conway's Law tells us we always need to consider the desired system
architecture, while assembling teams that will be responsible for
delivering them. The technical expertise is required, not only in the
development teams, but for designing organizational structures as well. It
requires a high level of technical understanding to design an effective and
adaptable organizational structure that supports our systems to evolve
in the best way. So, if we want to develop a particular system architecture,
appropriate team structures can help achieve the same. Whereas
inappropriate structures can lead to undesirable outcomes that greatly
differ from the original designs. But how much awareness can we attest to
HR alone or other departments regarding design of software systems?

Deciding on the organization's team structure, responsibilities, and
boundaries without input from technical leaders can prove to be greatly
ineffective and irresponsible. The organization design and software
design should be considered equally.

2.2 Identify Value Streams

9A holistic approach to DevOps: Our conquest, learnings, and experiments
© 2021 Nagarro

Good practices: Identify the best structure for your use case

• Using the technical knowledge from software development and
software or solution architecture, we can derive some good practices
and concepts to determine the right structure for our specific use case.
These practices can help us find the value stream, the continuous flow of
change.

• Software architecture that enables the business. It should be extensible
but built on a common platform.

• Loose coupling helps to ensure that components do not have strong
dependencies on other software parts.

• High cohesion results in components with well-defined and clear
responsibilities but their internal elements are strongly bound to each
other.

• Considering the end-to-end responsibility of cross-functional teams,
it should support collaborative testing and version compatibility.

To better understand the boundaries of an organizational structure or
architecture, Context Mapping is helpful.

It is a general-purpose technique, originating from the Domain Driven
Design (DDD) toolkit. The technique helps architects and developers deal
with various complications in software development projects. Context
mapping can be applied to any type of scenario and provides a high-level
view that helps us make strategic decisions.

It can help identify the so-called "Ubiquitous Language" in the program
parts and clarify communication channels between them. The ubiquitous
language should be the only language used to describe a model. Everyone
on the team should be able to agree on any specific term without ambiguity,
and no translation should be required. The maximum extent to which a
model can be stretched without compromising its conceptual integrity is
called context.

Through event storming, which is a workshop-based method for quickly
finding out what is happening in the domain of the software program,
a Context Map can be created. This in turn helps us identify the desired
value streams. Since a change in team structures has a direct impact on
communication lines between people and segments, tedious handovers and
coordination must be taken seriously.

The organizational structure itself is linked to the architecture to be reached
and cannot evolve beyond it. Fast deliveries to end users and release cycles
are indirectly related to the communication channels. The more autonomous
a team can work on its value stream, the more effective the system will be.

10A holistic approach to DevOps: Our conquest, learnings, and experiments
© 2021 Nagarro

Fig. 4: Communication lines of people

You could also say the communication between effective teams, should
be limited as much as possible to achieve the desired level of throughput.
Unnecessary and unstructured communication becomes an overhead.

Our observations

Since we work with so-called feature teams at Nagarro, these teams are
aligned with agile Scrum teams and possess all the skills required to
successfully complete their client project. These teams are not permanent,
they change from client situation to client situation, but are consistent for as
long as possible, as long-lived teams provide the most sustainable benefits.
It allows us to be extremely flexible in responding to clients. Similar to Scrum
teams, feature teams have an upper limit of team members. We usually keep
them as small as possible - maximum 5-8 people strong.

In cognitive psychology, cognitive load theory describes different types of
cognitive load in the process of knowledge acquisition. Established by John
Sweller and Paul Chandler, the theory assumes that learning is associated
with cognitive load and describes how learning can be made easier or more
difficult. Learning itself is a critical limiting factor in software delivery.

The theory assumes that the capacity of working memory is finite and that
only a certain amount of information can be retained. People have a limited
velocity to unlearn and relearn. The pace of change cannot be forced, it
can only be fostered. Embracing this assumption as well as the importance
of teams brings us to the key factor that assigning responsibilities and
designing organizational structures is a cognitive load on a team level.

Cognitive Load attributes a particularly important role in learning and
knowledge acquisition to the working memory. The working memory is
responsible for problem-solving and information-processing mechanisms.
There are three different kinds of cognitive load, defined by Sweller:

2.3 Cognitive capacity as the
primary limiting factor

11A holistic approach to DevOps: Our conquest, learnings, and experiments
© 2021 Nagarro

• Intrinsic cognitive load refers to the task that is caused by the task itself
or depends on the difficulty and complexity. The more difficult and
interconnected the task, the higher the intrinsic cognitive load.

• Extraneous cognitive load relates to the environment in which a task is
executed and the design of its instructions.

• Germane cognitive load or learning-related load refers to efforts
required to actually learn, understand, and excel certain concepts.
Keeping intrinsic and extraneous cognitive load on the lower side makes
room to focus on the germane load, leading to a more effective learning
experience.

Fig. 5: Different kinds of cognitive load

In terms of IT industry application, specifically to development teams, an
intrinsic cognitive load for a delivery team is for example knowledge about
the concept of Continuous Integration and how it can be applied. Extraneous
cognitive load in software delivery is often related to knowledge of specific
details that should be irrelevant to the task at hand. An example could be
irrelevant details about instantiating a test environment that requires the
user to execute several complicated, non-automated console commands.
Contrary to intrinsic cognitive load (which is generally immutable),
extraneous cognitive load can and should be minimized as much
as possible.

Germane cognitive load is often related to the effort of connecting and
understanding how certain business domains work and how software
solutions can be applied or design how various isolated services would
communicate with each other.

12A holistic approach to DevOps: Our conquest, learnings, and experiments
© 2021 Nagarro

Our observations

At Nagarro, we use a simple and quick method to assess the cognitive
load of feature teams - we ask them how they feel - “Is the team able to
respond effectively and in a timely manner to the required work?” This is
not a scientific study, of course, but it gives us a quick insight into whether
teams are feeling overloaded. We often add free text to the assessment
that prompts the teams with an option to give us more insights. You will be
amazed at how accurately individuals are able to rate their load.

We use the same method in a wide variety of client situations. If the
assessment is negative, the organization must take the necessary steps to
reduce the cognitive load. This ensures that the team can work effectively
and proactively again. Along the way, it boosts the morale, increases
employee satisfaction and motivation within the team, as members see
more value and meaning in their work.

Fig. 6: Cognitive capacity

Identifying symptoms of overburdened teams with cognitive load is often
relatively simple if organizations start actively looking for the warning
signs. However, measures to mitigate it entirely is a complex problem to
solve. In general, reducing extraneous cognitive load as much as possible
is advisable. This is where automation (e.g., Infrastructure as Code, Test
Automation, Continuous Integration & Delivery) and abstractions (e.g.,
Self-Service, establish common platforms) play an integral role. By
removing the requirement to think about certain, irrelevant aspects of
software delivery, the extraneous cognitive load can be minimized.

For the cognitive load of delivery teams, a profound way for an
organization to help reduce the load is by investing in the development of
employees, specifically those in development-related areas - developer
experience (DevEx) becomes a key driver.

13A holistic approach to DevOps: Our conquest, learnings, and experiments
© 2021 Nagarro

Foster a good developer experience to focus on the creation of
continuous added value. When an organization strives for effective
and high-performance delivery and operation of software systems, it
is essential that the intrinsic and extrinsic cognitive load of teams are
minimized. Thus, the cognitive capacity can be used to solve problems
situated in the complex problem space.

Reducing the intrinsic cognitive load of a team or the team members is
challenging since many tasks in modern software delivery projects are
inherently complicated, but there are some techniques that can help
minimize its impact. In the following, we highlight a small collection of
possible practices that can help you reduce unnecessary cognitive load

• Individual training programs and events: At Nagarro, we offer a wide
range of classroom trainings and self-learning via the highly successful
Nagarro University (NagarroU). Additionally, it is also imperative to
provide possibilities to share learnings, talk about successes or failures
in projects or explore new ideas or current topics together (e.g., “Show
& Tell” events). Offering those and other initiatives does not necessarily
reduce the intrinsic cognitive load required to learn certain concepts.
Still, it provides different perspectives on them, makes identifying
important information more efficient, and is generally more enjoyable.

• Practice pair programming or test-driven development: We teach
our colleagues to work directly on their project, their codebase to
guarantee the success of the project and drive quality as a driver
for innovation. We call this kind of learning experience - Technical
Excellence Trainings.

• Establish a technology radar: Another area to consider is keeping an
eye on a homogenous technology stack and ensure an appropriate
selection of technologies depending on the specific context in
which they should be applied. Especially in larger organizations, with
multiple, independent teams and products, a technology radar is
a valuable tool to reduce cognitive load caused by an unnecessary
diverse technology landscape.

Extraneous cognitive load should be eliminated where possible and
feasible. In development teams, it is often caused by redundant tasks or by
commands that are not relevant for the task at hand and can be automated.
It is important to consider that only extraneous aspects should be
eliminated by e.g., automation, abstraction, or removal. However, to make
good decisions relevant aspects should be as transparent as possible and
not hidden under potentially unnecessary abstractions.

In case we realize that we lack certain skills or know-how in a specific area
that is in demand with our clients, our colleagues have the possibility
to create a specialized training program. The same has been done
successfully in the field of Agile and DevOps for example. In these training
programs, which are now also known as Shift-up, we focus on conveying
the know-how to the employees in the shortest possible time but retaining
the highest quality. This in turn helps us to spread the topic more widely
and reach more colleagues – a win-win for everybody.

2.4 Foster developer
experience (DevEx)

14A holistic approach to DevOps: Our conquest, learnings, and experiments
© 2021 Nagarro

If we accept the premises outlined earlier, then a logical consequence is
that to be effective, efficient, and sustainable, teams must be able to work
autonomously and make decisions in the shortest possible time. A team
must have the skillset it needs to do its job without the corresponding
cognitive overload. It is as important to have a holistic view with the result
in mind as it is to create and communicate a common goal.

Continuous learning must be encouraged. Sharing ideas for experiments,
common interest, learning new ways of working that could make a team
more efficient, or learning from other approaches is essential.

At Nagarro, we are 10,000 employees spread all over the world. Our
mission is "Making distance irrelevant between intelligent people".
Recently, we also introduced a "Work From Anywhere" #WFA policy

Therefore, connecting colleagues is not an easy task. Especially with
DevOps, the topic of breaking down silos is communicated very actively.
It is important to us to promote communication between as many parties
as possible, always bearing in mind that too many lines of communication
are not advantageous, in many cases even harmful.

Moreover, we have had very good experiences with Community of
Practices (CoP) and other community forms to make the communication
as substantial as possible and to prevent the flood of information from
becoming too large and complex. These are not only forms that promote
communication among peers, but these groups provide a great deal of
know-how and bring back innovation into the business, which in turn can
be incorporated into the organization's strategy.

Among other things, we have global DevOps communities that currently
meet virtually, every 2-4 weeks for about 2 hours. The format is up to the
community. Current topics are discussed, colleagues show the latest
findings from their projects, or problems are discussed for which the
community may already be able to offer a solution. Other communities
come together for ensemble programming or work on katas to foster their
technical excellence.

In addition to the classic CoP, we also have other exchange formats, such
as the above-mentioned “Show & Tell” or our “Global DevOps Meet”,
which complete our learning journey. And we are already looking forward
to meeting again during on-site events. There will be a major DevOps
Summit within Nagarro, where people from all over the world come
together to talk about lean, agile and DevOps oriented ways of working.
Another measure that we consider a very valuable investment for our
future are the so-called Advocacy Teams.

2.5 Enable teams

15A holistic approach to DevOps: Our conquest, learnings, and experiments
© 2021 Nagarro

Fig. 7: Example outcomes of an actual project where a Quality DevOps - Advocacy Team
supported a feature team to improve in various areas. Improvements that were covered
include implementation and improvements of CI-pipelines, automated provisioning of
cloud-infrastructure as well as process improvements to amplify feedback loops.

16A holistic approach to DevOps: Our conquest, learnings, and experiments
© 2021 Nagarro

Fig. 8: High level overview of how DevOps Advocacy Teams are integrated
at Nagarrotheir technical excellence.

Their purpose is to work with our feature teams and guide them on
their personal journey. You could also call them Enablement Teams. We
invest in the quality of our projects, but also in our people and in the
development of their capabilities. Enablement teams take care of specific
aspects to improve the way of working and technical excellence or DevEx.
Let’s give a view of how this area of enablement might change in the
future. At present, the DevOps Advocacy Teams are small self-managed
teams working in Business Units. In the future, we envision larger Centers
of Enablement (CoE) whose primary goal would be to take the way of
working to a new level.

Embracing DevOps entails more than following certain technical practices
and principles. At Nagarro we try to consider DevOps as an encompassing
concept influencing many decisions and areas that are often forgotten.
While we firmly believe that there is no generically applicable blueprint
or one-size-fits-all universally valid solution to the several challenges, we
have tried to condense a framework in form of this guiding principles
that are simple to understand and apply. And based on our experiments
and experience in the past, these shall provide valuable results in many
different domains, industries, and organizational contexts.

We don't do DevOps so that we can say "we do DevOps". We use lean,
agile, and DevOps practices to deliver better value, faster, safer, and
happier. Our focus is on continuously improve the outcome. So, we also
recognize that this will not be the end state and we need to constantly
adapt, improve, and rethink.

Conclusion

17A holistic approach to DevOps: Our conquest, learnings, and experiments
© 2021 Nagarro

References Patrick Debois: https://itrevolution.com/faculty/patrick-debois/

Forrester - 2018 The Year of Enterprise DevOps: https://go.forrester.com/
blogs/2018-the-year-of-enterprise-devops/

Matthew Skelton & Manuel Pais - Team Topologies:
https://teamtopologies.com/

Matthew Skelton & Manuel Pais - DevOps Topologies:
https://web.devopstopologies.com/

Cynefin Framework: https://en.wikipedia.org/wiki/Cynefin_framework

Conway’s Law: https://en.wikipedia.org/wiki/Conway%27s_law

Cognitive load: https://en.wikipedia.org/wiki/Cognitive_load

About Nagarro
In a changing and evolving world, challenges are
ever more unique and complex. Nagarro helps
to transform, adapt, and build new ways into the
future through a forward thinking, agile and CARING
mindset. We excel at digital product engineering and
deliver on our promise of thinking breakthroughs.
Today, we are 10,000 experts across 26 countries,
forming a Nation of Nagarrians, ready to help our
customers succeed.

A holistic approach to DevOps: Our conquest, learnings, and experiments
© 2021 Nagarro

Marketing Team

Editor
Deeksha Mamtani

Designer
Harsh Magan

Jürgen Pointinger
Jürgen Pointinger is a DevOps enthusiast and
Practice Lead at Nagarro. He supports clients
in reaching the greatest sustainable, fast,
and secure benefits. Thereby he emphasizes
an open, value-adding culture, trust, and
continuous learning. He started his career as
a Developer before working as a Software/
Solution Architect, Team Lead, CTO,
IT Consultant and DevOps Coach. He spends
his free time with his family and learns from his
children to look at the world with different eyes.

Stefan Gwihs
Stefan Gwihs is a Test Automation Architect and
DevOps Coach at Nagarro. After completing
his bachelor's degree in computer science and
subsequently a master's degree in multimedia
and software development, Stefan focused
primarily on agile software development and
test automation. He is certified by ISTQB®
and IREB and has a very rich experience in the
optimal handling of IT projects thanks to his
diverse project activities.

About the Authors

