
Conquering complexity:
Test Automation for multi-brand
omnichannel e-commerce

by Bimal Tissakuttige

Table of Contents E-commerce business: An overview

Bridging the gaps: Critical testing needs
for modern e-commerce

The real challenges in test automation

Optimizing your testing e�orts:
A smarter approach to testing

A strategic approach to automated testing

1. Tool selection

2. Prioritization of test cases

3. Maintenance and scalability

4. Test early and often

5. Test with speed

6. Process

7. Accelerators

7.1 Re-running of tests

7.2 Error classification report

7.3 Dashboards

7.4 Self-healing and prevention

7.5 Test case vs Test script sync

8. Visual regression

9. Collaboration and communication

Conclusion: mastering omnichannel e-commerce
test automation

Glossary of Abbreviations

About the author

01

03

07

09

11

12

11

14

18

17

19

21

21

22

23

24

25

25

26

27

27

27

Conquering complexity: Test Automation for multi-brand omnichannel e-commerce

©2024 Nagarro

E-commerce business:
An overview

The development of e-commerce has significantly
transformed the landscape of modern business. As
digital technologies advance, e-commerce platforms
have become increasingly sophisticated, enabling
businesses to reach a global audience and o�er a
seamless shopping experience. This overview delves
into the unique nature of e-commerce, highlighting its
key features and strategic targets that drive business
success in this dynamic sector.

1

Conquering complexity: Test Automation for multi-brand omnichannel e-commerce

©2024 Nagarro

2

Unique nature
1. Omnichannel integration

• Seamless customer experience: Customers
can switch between online and o�ine
channels seamlessly. For instance, they
might browse products online and purchase
in-store, or vice versa.

• Unified inventory management: Integrates
inventory across all sales channels, ensuring
better stock visibility and management.

• Consistent branding and messaging:
Ensures that customers receive a consistent
brand experience regardless of the channel
they use.

2. Multi-regional capabilities

• Localization: Websites can o�er content
in multiple languages, accept di�erent
currencies, and adhere to regional legal
requirements.

• Regional warehousing and logistics: Setting
up regional warehouses to reduce shipping
times and costs.

• Market-specific strategies: Tailoring
marketing and promotional strategies to
suit regional preferences and behaviors.

Targets
1. Increased reach and market penetration

• Global access: Ability to tap into new
markets by making the website accessible
to a broader audience.

• 24/7 availability: Customers can shop
anytime, breaking the limitations of physical
store hours.

2. Enhanced customer experience

• Personalization: Use data from various
channels to provide personalized
recommendations and o�ers.

• Convenience: Providing multiple purchasing
options, such as buy online, pick up in-store
(BOPIS), enhances customer convenience.

3. Operational e�ciency

• Integrated systems: Streamlining
operations by integrating sales, inventory,
and customer service systems across all
channels.

• Data analytics: Leveraging data from all
regions and channels to make informed
business decisions.

4. Competitive advantage

• Adaptability: Being able to quickly adapt to
market changes and customer preferences
in di�erent regions.

• Brand loyalty: Providing a consistent and
high-quality customer experience builds
brand loyalty across di�erent regions.

Conquering complexity: Test Automation for multi-brand omnichannel e-commerce

©2024 Nagarro

Language
1

Language
2

Language
3

Country
1

Brand
A

Brand

Region

Country

Internationalization

Application under test

Brand
B

Brand
C

Region
A

Region
B

Country
2

Country
3

Country
4

Country
5

Country
6

...

......

...

...

AUT 1 AUT 2 AUT 3

3

Use case example: Global fashion retailer

Bridging the gaps: Critical testing needs
for modern e-commerce
As the e-commerce landscape evolves, businesses are expanding their reach by adopting omnichannel
strategies and serving multiple regions with localized versions of their platforms. This complexity
brings a unique set of challenges to test automation, especially when dealing with multiple brands and
internationalization. Here, we will explore the key challenges, a structured test approach, and an e�ective
strategy for automating tests in such environments.

In this article, we will focus on the end-to-end testing aspect of e-commerce application test automation,
as the entire test automation strategy is a vast topic encompassing many di�erent levels of testing
automation.

In this article, we will illustrate how the test automation principles are applied in real-world scenarios by
providing specific examples and references through the following use case. You might notice that we use
specific terms instead of more general ones. For example, we'll mention 'Zephyr' as the tool, rather than
using the broader term 'Test Management tool.'

The following use case is inspired by an actual project; however, details have been anonymized to ensure
the privacy and confidentiality of the client are fully protected.

A global apparel and footwear company operates multiple e-commerce websites for di�erent brands
(e.g., Brand A, Brand B, and Brand C) and serves customers across various regions (e.g., North America and
Europe). Each region comprises multiple countries, with each country supporting multiple languages. Each
brand has a unique design and user experience, and the websites need to support multiple languages,
currencies, and localized content. The websites cater to users of web browsers on all major desktop and
mobile operating systems.

Conquering complexity: Test Automation for multi-brand omnichannel e-commerce

©2024 Nagarro

Desktop Mobile

6

The websites are developed using a common UI platform or di�erent platforms, depending on
the brand's choice, using Vue.js, while the backend is developed using RESTful APIs based on the
Mulesoft API platform. The CMS is CoreMedia, and the CRM is Salesforce. The websites use various
payment methods and gateways such as Credit Card, Gift Cards, PayPal, Klarna, Apple Pay, Adyen,
and Cybersource.

The development teams practice two-week sprints, and the applications are released to production
at the end of every sprint. The project management tool used is JIRA, and the test management tool
is Zephyr.

Functional testing is carried out covering all the above application instances/contexts in many di�erent
development, test (QA, staging), and production environments.

• Total regression test count per brand/country/region/language/environment: 1300

• Total number of AUT instances to be tested: 16 (assuming 1 language per country)

• Total number of regression tests: 1300 * 16 = 20800 (assuming test count per instance are all equal,
though realistically, it slightly varies)

Conquering complexity: Test Automation for multi-brand omnichannel e-commerce

©2024 Nagarro

7

The real challenges in end-to-end
test automation

As e-commerce platforms evolve, the complexities of maintaining a seamless, high-quality
user experience across multiple brands and regions become increasingly pronounced. These
challenges are compounded when businesses adopt omnichannel strategies and need to cater
to a diverse global audience. Test automation, while a powerful tool for ensuring consistency
and e�ciency, faces significant hurdles in such multifaceted environments. In this section, we will
delve into the primary test automation challenges that arise.

Diverse user
experiences

Each brand has its own identity and
user experience, which needs to be
maintained across di�erent regions.
Variations in UI/UX design across brands
and regions add complexity to test
automation scripts.

Example: Brand A has a minimalist
design while Brand B uses a more
vibrant, image-heavy layout. Test scripts
must handle these UI di�erences.

Internationalization (i18n) and
localization (l10n)

Support for multiple languages,
currencies, and regional settings
requires comprehensive testing to
ensure correct functionality. Handling
date formats, number formats, and
text direction (e.g., left-to-right vs.
right-to-left) in automated tests.

Example: Brand A website might need
to support English, French, German and
Italian. Automated tests must check that
translations are correct and that the
layout adapts to languages.

Dynamic content and personalization

Content might change based on user
profiles, preferences, and regional
promotions. Automated tests need to
account for dynamic and personalized
content, ensuring consistency.

Example: Homepages might display
di�erent promotions based on user
location or past purchases. Automated
tests should verify that the correct
promotions are shown.

Multi-device and multi-platform testing

Ensuring a seamless experience
across various devices (mobile, tablet,
desktop) and platforms (iOS, Android,
Web). Managing di�erent screen sizes,
resolutions, and operating system
versions.

Example: Testing an app on iOS and
Android devices, as well as di�erent web
browsers like Chrome, Firefox, and Safari.

Conquering complexity: Test Automation for multi-brand omnichannel e-commerce

©2024 Nagarro

8

Integration with backend systems

Integration with many di�erent payment
gateways, inventory management
systems, and other third-party services
must be tested thoroughly. Handling
asynchronous processes and APIs in test
scripts.

Example: Testing the checkout process
involves verifying integrations with
di�erent payment gateways. Successful
order placement needs to be verified in
other integrated systems.

Testing demand

In addition to many di�erent
brand-region-country-language
specific websites, it's expected to test
multiple di�erent versions of them
simultaneously.

Example: Testing the version n on
staging environment while n+1 version
on QA environment and development
environment.

Test maintenance

Certain features may apply to certain
brand-region-country websites only
while certain other features apply to all
websites. Keeping test scripts up-to-date
with evolving applications features and
design changes.

Example: Subjected applications are
evolving consistently, where tests
identified to be automated with priority
come to about 50-75 test cases per
sprint on average. Additionally, 3-5%
tests are removed from the scope, and
15-20% tests are changed out of the
entire regression set. Test scripts should
handle such frequent changes over a
long period of time.

Conquering complexity: Test Automation for multi-brand omnichannel e-commerce

©2024 Nagarro

9

Optimizing your testing e�orts: A smarter
approach to testing

A comprehensive test approach is crucial for e�ectively automating tests in a complex e-commerce
environment with multiple brands and regions. The following steps outline a structured approach to
tackle the challenges:

Requirement analysis and test planning

Understanding the requirements for each brand and region, including unique features
and regional customizations, is the first step. Create a detailed test plan that includes the
scope of automation, test objectives, tools, and technologies to be used. For example,
when implementing a new feature like multi-currency support, define the scope,
objectives, and key scenarios to be automated.

Modular test design

Adopt a modular approach by creating reusable test components and libraries that
can be shared across di�erent brands and regions. Use parameterized tests to handle
di�erent regional settings and configurations. For instance, create reusable modules
for login, product search, and checkout that can be used across di�erent brands.

Test data management

Manage test data e�ectively to support di�erent languages, currencies, and regional
settings. Use data-driven testing techniques to validate multiple scenarios with varied
inputs. An example would be using a data-driven approach to test di�erent payment
methods (credit card, PayPal, Apple Pay) across regions.

Automation framework

Choose a robust and scalable automation framework that supports multiple devices,
platforms, and languages. Implement a layered architecture with separate layers for test
scripts, test data, and configuration settings. For instance, use Selenium WebDriver for
web automation and Appium for mobile automation within the same framework.

Conquering complexity: Test Automation for multi-brand omnichannel e-commerce

©2024 Nagarro

10

Continuous integration and continuous deployment (CI/CD)

Integrate test automation with CI/CD pipelines to ensure tests are run continuously and
feedback is received promptly. Use containerization and virtualization techniques to
replicate di�erent environments for testing. An example would be integrating automated
tests with Jenkins to run tests on every code commit and deploy to staging environments.

Test environment management

Setting up and maintaining multiple testing environments for many di�erent application
regional variations, simultaneously, is crucial. For example, use Docker to create consistent
test environments that mirror required settings.

Monitoring and reporting

Implement comprehensive monitoring and reporting mechanisms to track test execution
and results. Use dashboards and alerts to provide real-time feedback on test status and
issues. An example would be using tools like Allure or TestRail to generate detailed test
reports and track test execution status.

Conquering complexity: Test Automation for multi-brand omnichannel e-commerce

©2024 Nagarro

In this instance, after careful consideration and POCs, the decision is made to build the test automation
framework around tools and technologies such as TestCafe, TypeScript, Gherkin, Docker, Jenkins,
Bitbucket, Browserstack, AWS, and Nexus.

Tools may be selected at the beginning or during test implementation based on requirements and
improvements/changes. For example, selecting the main automation tool at the start, or adding visual
regression or accessibility testing support later as an improvement.

A strategic approach to end-to-end
automated testing

1. Tool selection

Research
Conduct thorough research on available tools,
considering key factors such as:

• Support for Vue.js and RESTful APIs
• Cost-e�ectiveness
• Integration with CI/CD, test management,

and reporting tools
• Flexibility for future additions (visual

regression, accessibility, performance
testing)

• Customizability and extendability
• Scalability and ease of management

Popular tools considered
Evaluate tools based on project requirements:

• Web testing: TestCafe, Selenium, Cypress,
Puppeteer

• Mobile testing: TestCafe, Appium,
Espresso, XCUITest

• API testing: Postman, RestAssured, SoapUI
• CI/CD tools: Jenkins, CircleCI, GitHub

Actions

Selection criteria
Consider the following when choosing tools:

• Match with team skills and minimal
upskilling e�ort

• Documentation and community support
• Ease of troubleshooting and

problem-solving
• Conduct POCs against project-specific

requirements

11

Conquering complexity: Test Automation for multi-brand omnichannel e-commerce

©2024 Nagarro

12

2. Prioritization of test cases

Handling over 20,000 tests with automation can be overwhelming for any team, considering the shorter
release cycles (shorter window for testing inherited with it), and limitations in capacity and infrastructure
cost. To address this challenge, we aim for an approach that maximizes the e�ectiveness of the testing
process while optimizing resources.

Automation
priority

Priority 2
(positive ROI)

Saves cost

Repetitiveness

Business criticality

Increase
impact

Not to automate
(negative ROI)

Priority 1
(maximum ROI & impact)

Priority 3
(low ROI, leave to

manual execution)

Conquering complexity: Test Automation for multi-brand omnichannel e-commerce

©2024 Nagarro

• Prioritize test cases based on business impact, customer requirements, business criticality,
defect-prone areas, new features, compliance needs, manual execution complexity and
frequency of use.

• Focus on high-value tests like smoke and regression tests, prioritizing frequently run and repetitive
tests to save manual e�ort.

• Strongly consider testcase stability before picking them up for automation.
• Consider simple tests to be automated with priority.
• To gain faster coverage, take up data driven tests with priority whenever possible.
• Prioritize testcases considering ROI, based on cost benefit analysis and eyeing the long-term gains.
• Target to keep up with the development and manual testing without letting too many important tests

spill over to the next sprint and eventually to the backlog.
• Understand that 100% test automation is not a realistic goal. Due to ROI, infeasibility and importance

in performing them manually, certain tests can be left out of the priority list. Make this transparent to
other stakeholders and get their buy-in.

• Mark tests with appropriate labelling that are not automated with priority for potential future
automation.

13

Conquering complexity: Test Automation for multi-brand omnichannel e-commerce

©2024 Nagarro

• Target to achieve approximately 80% test automation coverage for the complete regression test set.
When there's enough capacity available, go after the lower priority cases.

• Track testcase information such as priority (High, Medium, Low), applicability for di�erent
brand/region/country/language/devices, and test suites (smoke/regression/sanity) in Zephyr test
management tool.

• Design test cases focusing on end-to-end scenarios that cover major user journeys across di�erent
channels and regions compared to having many repetitive granular level tests which may consume
comparatively higher execution time.

Example: Prioritizing checkout process tests for all brands and regions is crucial as it directly impacts
revenue.

• The team's expertise should be strongly considered during assignment of tests to be automated.
• Choose which application instances the tests are to be executed on, as it's not viable to execute all test

cases against all their applicable brand/region/country/devices.

Example:

1. Test high priority tests across all language instances while conducting the rest of the regression
tests against one language per brand-region-country.

2. Reduce multiple supported browsers specific test repetition by introducing cross-browser test
suites. For instance, Google Chrome is used for all regression test executions as the primary
browser while smaller cross-browser suites take care of browser compatibility tests.

Test
suites

Testcases Page
objects

Step
definitions

Web
elements

Keywords Config Data Jenkins
pipelines

Keywords Data

Web elements Configs

Environment

Device

Country

Region

Brand

Features

Functional
Area

Test suites

Jenkins scripts Step definitions

Page objects

Testcases

14

Ensuring test scripts are easily maintainable as the application evolves is crucial for long-term success.
The automation framework should be designed to be scalable, allowing the addition of new brands,
regions, and channels with minimal e�ort. To achieve this, it's important to organize main segments of
the test automation framework (test cases, page objects, step definitions, web elements, keywords,
data, configs, jenkins scripts, and test suites) to be configurable based on functional area, features,
brand, region, device, country, language, and environment.

3. Maintenance and scalability

Conquering complexity: Test Automation for multi-brand omnichannel e-commerce

©2024 Nagarro

Test

Step definitions

Pages

Panels

• Feature files
• Test scenarios
• Steps
• Data definitions

• Step definition class
• Step methods es
• Page objects

• Panel object classes
• Elements
• Action methods
• Panel objects

• Panel object classes
• Elements
• Action methods

15

Framework design and organization

To support maintenance and scalability, consider the following strategies:

1. Design test cases to support applicable brand-region-country combinations by handling
conditional business logic and adding specific tags at the scenario level to facilitate execution
using tags/tags combinations.

2. Use device-specific tags at the test scenario level for execution against di�erent devices.
3. Classify test cases, page objects, and web elements under functional area/feature-specific

folder/file structure for team specialization.
4. Construct web element locators with conditions based on brand-region-country information.
5. Use the page object design pattern, with page objects holding elements, actions performed on

those elements and panel object instances. panel objects hold repetitive/common web element
sections (example: header/footer) which helps optimization of resources usage.

6. Ensure step definition methods interact with the application only through page objects' action
methods.

Data management and CI/CD integration

1. Maintain test data (example: products, users, promotions, stores, payment) in brand-region-
country and environment specific files so during execution tests can have di�erent data samples
based on parameters.

2. Minimize hard coding data and use data definition keywords at the feature file level. Values held
by keywords are realized during runtime based on what they held in brand-region-country and
environment specific data files.

3. In data files, use language-specific keys for data-level translations.
4. Integrate ci using jenkins master script and test execution-specific jenkins configs. Master

script holds all the conditional logic to handle di�erent types of test executions depending on
parameters injected via config files during each execution.

5. Jenkins scripts are classified based on functional area, environment, brand-region-country, device
and test suite information so it provides an easier and organized way to scale the automation with
newly added brands, regions, countries and devices.

Conquering complexity: Test Automation for multi-brand omnichannel e-commerce

©2024 Nagarro

16

Use docker images for cost-e�ective and scalable remote test execution infrastructure.
(example: npm and required browser versions installed)

utils

Common libraries AUT specific libraries

Configuration

Test data management

Dashboards

Test / data validator

Reports

Test execution handler

Common events

Common elements

Page objects

Functionality steps / workflows

Features

Core

Jenkins scripts

Addons

API handler

Additional best practices

Maintain 1:1 mapping between jenkins pipelines, jenkins scripts, and zephyr test plans for easier artifact
creation. When a new type of test pipeline execution (new brand-region-country specific smoke test) is
needed, only a pair of new jenkins config and corresponding to that is expected to be created.

Update test execution results in test cycles and present test automation coverage easily by maintaining
1:1 mapping between automation test scenarios and zephyr test case.

Use backend services/apis for setup and teardown steps to improve e�ciency and stability oppose to
using frontend.

Introduce dependency and package management (segregating common utility libraries which are not
sensitive to changes in the application under test) for better version control (backward compatibility),
improved code reusability across di�erent source code repositories/branches and support modular
development.

Conquering complexity: Test Automation for multi-brand omnichannel e-commerce

©2024 Nagarro

17

1. Development environment

In the development environment,
smoke tests are run every 4 hours.
This frequent testing helps catch issues
quickly as developers make changes.

2. QA environment

The QA environment sees more extensive
testing on a daily basis. This includes
smoke tests, regression tests, and mobile
testing to ensure thorough coverage of all
aspects of the application.

3. Staging environment

For each release to the staging
environment, a comprehensive suite
of tests is run. This includes smoke
tests, regression tests, cross-browser
testing, and mobile testing. This
thorough approach helps identify any
issues before moving to production.

4. Production environment

In the production environment, smoke
tests are run for each release. This
final check helps ensure that the core
functionality of the application is working
as expected in the live environment.

4. Test early and often

Leveraging automation to detect defects early in the application development lifecycle is crucial for
maintaining high-quality e-commerce platforms. By implementing a "test early and often" approach,
testing teams can provide valuable feedback on the impact of new feature development. This strategy
helps development teams improve quality, mitigate risks, and increase confidence in released features.

To ensure comprehensive testing coverage, it's important to test frequently across various environments:

Conquering complexity: Test Automation for multi-brand omnichannel e-commerce

©2024 Nagarro

18

5. Test with speed

To ensure e�cient and rapid testing across multiple e-commerce applications, the following strategies are
implemented:

• Opt in for parallel threaded execution and use dedicated users in each thread to avoid data dependency

• Design jenkins pipelines setup in a way that all tests for all brand-region-country-language websites
can be run simultaneously for a given environment or for multiple environments, depending on the
requirements.

• The complete regression test suite is broken down into functional area specific tests that allows easier
work distribution with more specialized domain experts. Each functional area specific test suite is
run with 5-10 parallel threads depending on the capacity of the aws ec2 instance (jenkins slave) that's
assigned for tests execution. Assuming total functional area count is 4 - 5, approximately 40 tests are
run parallel per website

• A round of test execution takes not more than 1.5 hours. As all tests get triggered at the same time, all
test executions are completed under 2 hours

• Use browser headless mode for test execution

• Use browserstack for mobile device specific test execution and highly UI- sensitive tests execution
(example: checkout flow)

• Rerunning of failed tests is automatically triggered immediately based on the execution results using
jenkins pipelines (rerun pipelines are designed corresponding to original test execution pipelines) and
keeps repeating based on the results of subsequent rounds of test execution.
Rerunning of failed tests is explained in section 7.1

Conquering complexity: Test Automation for multi-brand omnichannel e-commerce

©2024 Nagarro

19

6. Process

To optimize the overall development process and ensure e�ective test automation, it's crucial to adopt a
holistic approach that goes beyond simply automating existing functional test cases. This involves:

Examples of process improvements include:

• Contributing progressive ideas and fostering collaboration to optimize the entire development
process

• Making stakeholders aware of automation's contributions, limitations, and benefits
• Understanding priorities better and negotiating risk mitigation and process improvements

1. Agreeing to add data-testid to web elements for stability in automation
2. Requesting development teams to publish additional resources for automation testing

(Example: Special web pages for testing of CMS functionality)
3. Defining clear conditions and schedules for automation testing

4. Establishing rules and guidelines for the automation team

AUT start
entry criteria

1. Functional test
case available

2. Regression test
3. Deployed in DEV
4. data-test-id added
5. Test automation feasible

1. Scripting complete
2. Data setup complete
3. Execution tested
4. Reviewed
5. Code checked in
6. Jenkins integrated
7. Available for daily

exection

1. Deployed in QA
2. Functional testing

complete

AUT complete
entry criteria

AUT exit
entry criteria

Pre-Deployment

-2H

1. Sync code
2. Run data scanner
3. Fix data scanner issues
4. Run smoke tests
5. Analyze results
6. Fix script/data issues

Post-Deployment

1. Run data scanner
2. Fix data scanner issues

Smoke Test

1. Execute tests
2. Analyze results
3. Fix script/data issues
4. Report Defects

Regression Test

1. Execute tests
2. Analyze results
3. Fix script/data issues
4. Report Defects
5. Defect retesting

Post-Regression

1. Sync code

Conquering complexity: Test Automation for multi-brand omnichannel e-commerce

©2024 Nagarro

working
(QA env)

master
(Staging env)

• Development Sprint N Start
• Staging env release N`

• Development Sprint N + 1 Start
• Staging env release N` + 1

Hot fix

Code sync Code sync

Script fixes

New tests

20

Additional process considerations include:

• Maintaining 1:1 mapping between test cases stored in test case management tool and automation test
scenarios/outlines for easier test execution results updating and automation coverage presentation

• Using backend services/APIs for setup and teardown steps to improve e�ciency and stability
• Introducing dependency and package management for better version control and code reusability
• Using Docker images for cost-e�ective and scalable remote test execution infrastructure
• Controlling system configuration using APIs (example: Turn o� LaunchDarkly feature flags to disable

reCAPTCHA in test environments) wherever possible and manually so there are no surprises during test
automation execution

• Implementing a strong branching strategy corresponding to the work being done against di�erent
environments and doing the code synchronization timely aligned with the application changes in each
environment

Conquering complexity: Test Automation for multi-brand omnichannel e-commerce

©2024 Nagarro

21

7. Accelerators

There are many activities performed during the test automation process without the assistance of soft-
ware programs. These activities can be repetitive and considering the project's duration, they could be
happening too many times consuming a lot of accumulated e�orts. Replacing these activities with test
automation accelerators saves a considerable amount of e�ort for the team and improves accuracy
and e�ciency in delivery.

7.1 Re-running of Tests

Many activities in the test automation process are performed manually without software assistance. These
repetitive tasks can consume significant accumulated e�ort over the project duration. Implementing
test automation accelerators for these activities can save considerable e�ort and improve accuracy and
e�ciency in delivery.

Frontend tests, especially long-running end-to-end tests, are inherently unstable and flaky. They frequent-
ly break due to false positives, often caused by data-related issues, environmental problems, or timeouts
due to slowness. In this case, in order to evaluate the complete test result, running all tests over and over
until 0 false positives, is not cost-e�ective. Therefore, an e�cient test rerunning mechanism that only
reruns failing tests is necessary.

However, it's not logical to rerun tests that fail due to application defects or temporary blockers. Further
optimization is required by introducing necessary filters for rerunning failed tests. Additionally, there's
a possibility that test execution could be abruptly terminated before completion. To address this, it's
important to execute the remaining 'not run' tests first before retrying the failed tests, ensuring a fair
representation of the overall result from the first round of test suite execution.

Rerun

Is Test
Pass

Further
check

Further
check

Further
check

Is
Defect

Waiting for
clarifications

Is Test script
fix needed

Status: Pass

Rerun

Status: Blocked Status: Fail

No

No No No

YesYesYes

Fix Script

Conquering complexity: Test Automation for multi-brand omnichannel e-commerce

©2024 Nagarro

22

7.2 Error classification report

Standard reports from automation tools provide individual test failure information, but this often requires
the automation team to manually review each test case to identify failure reasons. To streamline this
process and improve e�ciency, an error classification system can be implemented:

• Classifying errors based on their nature provides the automation team with an additional resource to
speed up results analysis.

• This classification helps the team prioritize fixes based on impact and make quicker decisions.
• Implementing error classification can be achieved by throwing framework-specific exceptions/errors

based on applied filters to results.

By implementing this error classification system, teams can more e�ciently analyze test results, prioritize
issues, and make informed decisions about necessary fixes. This approach can significantly reduce the
time spent on manual review of individual test failures and allow for more strategic allocation of resources
in addressing critical issues.

To implement this logic, Jenkins rerun pipelines are designed corresponding to each original Jenkins
test execution pipeline. These can be retriggered based on build status recursively or on demand,
significantly reducing the time required for test results analysis. Each test execution maintains its own
artifacts and updates accumulated results into dashboards.

Zephyr test results serve as the single source of truth for test status, enabling accurate decisions
on whether to run a certain test during the rerun phase, regardless of who is executing it (locally or
remotely via Jenkins). This approach facilitates better work distribution during test results analysis
and prevents duplication when multiple team members work on analyzing the same test suite results.

Yes

No

No

Rerun only not
run tests

Rerun only failed
not caused by

defects

Is Test suite
completed

Is All tests
passed or failed

are caused
by defects

Conquering complexity: Test Automation for multi-brand omnichannel e-commerce

©2024 Nagarro

23

7.3 Dashboards

In addition to the standard reports available via the primary test automation tool and JIRA/Zephyr, there
are other statistics that help make accurate and faster decisions. Implementing dashboards that render
these statistics in an easily accessible manner is key to success. A locally hosted dashboard via terminal
commands is utilized, with updated snapshots of the dashboard being published to confluence regularly
so other stakeholders can make use of them.

Key statistics

1. Results trend over builds/executions: Showing test results per every test case over past builds
allows the team to identify the brittle tests and prioritize them for fixing.

2. Results comparison testcase vs brand-region-country-language-device: Presenting current test
execution related results on test cases against all application instances the test was executed
allows the team to determine failure causes quickly.

3. Test execution status: Current test execution status (number of tests executed, passed, failed,
skipped, blocked, impacted by defects and remaining to be attended, defects and their statuses
along with impacted number of tests, team assignments) for all test suites being run currently,
provide a complete overview in one view.

4. Test execution time: Presenting test execution time per every test case over past builds allows the
team to identify the ine�cient tests and prioritize them for fixing.

5. Test automation coverage: Presenting number of total tests, total automated and total
deprioritized for all the applications in a bar chart provides an overview of test automation
coverage.

Conquering complexity: Test Automation for multi-brand omnichannel e-commerce

©2024 Nagarro

24

7.4 Self-healing and prevention

Automated test executions often fail due to false positives, leading to significant e�ort spent on investi-
gating misleading information without producing any definitive results. Self-healing and preventive
measures must be implemented to avoid false positive results.

False positives can occur due to:

• Environment issues: Inconsistent configurations, insu�cient resources, or issues with dependencies
can cause tests to fail even when the software is functioning correctly.

• Data issues: Using incorrect, outdated, or inconsistent test data can lead to unexpected failures, even
if the application is working as intended.

• Timing and synchronization problems: Tests may check for conditions before the application has fully
completed an operation, resulting in false failures.

• Misconfigured test setups: Incorrect settings, such as wrong URLs, paths, or parameters, can cause
tests to behave unexpectedly and produce false positive results.

Actions taken to avoid false positives include:

1. Introducing a scanner that automatically scans products, users, promotions, stores, and payment
data, checking for validity before the test suite execution. This allows the automation maintenance
team to make necessary manual changes in a timely manner.

2. Adding automatic data and configuration validation as preconditions to test steps, enabling them to
self-heal any data and configuration issues that may arise between the last manual scan prior to test
suite execution start and the execution of individual tests.

3. Implementing a heartbeat check before tests to ensure that the application and relevant backend
services are up and running. Backend services are used to restore configurations if they are not in
the expected condition before test execution.

4. Adding a failover strategy where test scripts are retried automatically after restoring data and config-
urations, if failures are identified as due to known data or configuration issues (Error classification).
This helps to self-heal tests that fail due to changes that occur during test execution, after the initial
automatic check.

Conquering complexity: Test Automation for multi-brand omnichannel e-commerce

©2024 Nagarro

Check only
used info

before the
idividual

test

Execute
individual

test

Is
issue?

Test
pass?

Is
issue?

Fix only used info
based on identified

failure causes
Self-heal and retry

No

No No

YesYes

Manual fix

Check for
all data, config,

BE service
issues before

test suite
execution

7.5 Test case vs Test script sync
Maintaining and keeping up-to-date functional test cases and corresponding test scripts is necessary.
Whenever changes are introduced to the existing features, functional test cases are changed accord-
ingly and there should be an easier cost-e�ective way to be able to track down where changes are
required at the test script level.

In this instance, there are frequent changes being done to the functional testcases due to various
reasons (example: feature applicable devices being updated, feature change impacts across all
applications, certain feature change only happens for a certain brand region only) and these changes
could be done by any stakeholder who is not responsible for test script maintenance.

Introducing a test automation framework feature that can listen and notify on the test case level
changes addresses the problem. Zephyr API is used to extract test case information changes since
the previous sync.

25

8. Visual regression

Implementing visual regression testing is crucial to ensure UI consistency across di�erent versions of
the application. This approach helps maintain a consistent user experience and catch unintended visual
changes early in the development process.

Conquering complexity: Test Automation for multi-brand omnichannel e-commerce

©2024 Nagarro

visualTest(){
simulate UI state 1
check(“check 1”)
simulate UI state 2
check(“check 2”)
simulate UI state 3
check(“check 3”)
}

Baseline
<empty>

Results:

Image 1

Image 2

Image 3

Image 1

Image 2

Image 3

New

New

New

1) AUT V1 & Visual test 2) 1st test & Results 3) Review result 4) Create Baseline

5) AUT V2 & Visual test 6) Results 7) Review result / Comparison 8) Report & Update baseline

visualTest(){
simulate UI state 1A
check(“check 1”)
simulate UI state 2
check(“check 2”)
simulate UI state 3U
check(“check 3”)
}

Results:

Image 1 A

Image 2

Image 3 U

di�

-

di�

Baseline

Image 1

Image 2

Image 3

Baseline

Image 1 A

Image 2

Image 3

Baseline

Image 1

Image 2

Image 3

Image 1 A

Image 2

Image 3 U

26

9. Collaboration and communication

E�ective collaboration and communication are essential components of a successful test automation
strategy for multiple omnichannel e-commerce applications. To ensure alignment on test automation
goals and strategies, it's crucial to foster collaboration between development, QA, and operations teams.
This collaborative approach helps create a unified vision and ensures that all stakeholders are working
towards the same objectives.

One key aspect of promoting collaboration is to increase awareness among other stakeholders about
the test automation approach and its associated challenges. This can be achieved through regular demo
sessions, which provide an opportunity to showcase the automation process, highlight successes, and
discuss any obstacles encountered. These sessions help build understanding and appreciation for the
complexities of test automation across the organization.

Maintaining transparency and driving continuous improvement requires regular communication of
test results, progress, and challenges to all relevant stakeholders. This open line of communication
ensures that everyone is kept informed about the status of the automation e�orts and can contribute
to problem-solving and process refinement as needed.

To support these collaborative e�orts, it's important to make comprehensive documentation readily
available. This documentation should cover various aspects of the test automation process, including
the overall strategy, infrastructure details, user manuals, build reports, team structure, contact informa-
tion, and links to relevant resources. By providing easy access to this information, teams can work more
e�ciently and e�ectively, with a clear understanding of the automation landscape.

Conquering complexity: Test Automation for multi-brand omnichannel e-commerce

©2024 Nagarro

• As the visual regression maintenance cost is high compared to the expected return, compile a small
suite of tests that navigate through key pages of the application and use it for daily visual regression
testing using Applitools.

• Run tests in a much more stable test environment daily, with baselining done every day after manual
results analysis.

• Maintain data/config consistency and exclude dynamic content from comparison by using the
Applitools API, focusing the tests on the UI aspect of the application only.

By implementing these visual regression testing strategies, the team can quickly identify and address any
unintended visual changes, ensuring a consistent and high-quality user interface across all versions of the
e-commerce applications.

27

Conclusion: Mastering omnichannel
e-commerce test automation

About the author

Glossary of Abbreviations

Automating tests for omnichannel e-commerce applications serving multiple brands and regions
with internationalization support is a challenging but essential task. By understanding the unique
challenges, adopting a structured test approach, and implementing a comprehensive test automation
strategy, businesses can ensure high-quality user experiences across all channels and regions.

E�ective test automation not only improves e�ciency and coverage but also helps in delivering
consistent and reliable e-commerce platforms that meet the diverse needs of global customers.

EC2 – Elastic Compute Cloud (Amazon Web Services)
API – Application Programming Interface
SaaS – Software as a Service
POC – Proof of Concept
ROI – Return on Investment
AUT – Application Under Test
REST – Representational State Transfer
UI/UX – User Interface/User Experience
QA – Quality Assurance
XML – Extensible Markup Language
CSV – Comma-Separated Values
SLA – Service Level Agreement

i18n – Internationalization
l10n – Localization
CI/CD – Continuous Integration and
Continuous Deployment
API – Application Programming Interface
CMS – Content Management System
CRM – Customer Relationship Management
BOPIS – Buy Online, Pick Up In-Store
UI – User Interface
UX – User Experience
POM – Page Object Model
BDD – Behavior-Driven Development

Bimal Chathurinda Tissakuttige is a seasoned IT professional with over 17
years of experience, specializing in Test Automation, Performance Testing,
Functional Testing, and Software Development. Currently a Principal
Engineer at Nagarro iQuest Schweiz AG in Zurich, Bimal directs a team
focused on developing and implementing innovative test automation
solutions. His career spans across various industry domains, including e-
commerce and banking, demonstrating a strong track record in optimizing
testing processes and managing large teams. Bimal holds a B.Sc. (Hons.)
in Computing from Sta�ordshire University, UK.

https://www.linkedin.com/in/bimaltissakuttige/

Conquering complexity: Test Automation for multi-brand omnichannel e-commerce

©2024 Nagarro

