
AI4T – From research to reality

© 2020 Nagarro

AI4T – Advanced
Intelligence for Testing

From research to reality

2
AI4T – From research to reality

© 2020 Nagarro

Funded by the Austrian Research Promotion Agency (FFG), a team of
Nagarro automation and AI experts has been researching the vision of
a highly automated test life cycle. Their goal is to make QA-related
processes more comprehensive, scalable, faster, and above all, more
intelligent.

In software engineering, the subject of software testing has become an
integral part of development processes. The automation of tests has also
proven itself and contributes to shorter and more efficient development
cycles. Many teams already integrate automated tests in their develop-
ment pipelines and execute test cases at several test levels when check-
ing-in the new or changed source code. This makes it possible to detect
errors more quickly and, in the best case, prevent them from making their
way into the common code repository in the first place. From a quality as-
surance perspective, you might think that we have achieved a satisfactory
level of quality, right? Well, think again.

Day-to-day work in real life

Unfortunately, the reality is, often, quite different. As the following scenario
exemplifies, the painstakingly achieved progress brings additional chal-
lenges, including those that had not been considered previously:

Tom, our UI developer, has implemented the new designs of our log-in page
for our web application. After his commit, the check-in tests failed. Since Tom
wants to finish the task before sprinting off to his family, he accepts the fact and
checks-in the code. Revising the test will be the first thing to do tomorrow morn-
ing, he thinks. The next morning, Bernd, our back-end developer, finds out that
about 40 test cases have failed in the nightly test run.

A quick analysis of the log files

It takes two hours of painstaking analysis of the log files to discover the root
cause of the problem. This is followed by a serious conversation between Bernd
and Tom. Bernd believes he has finally updated all relevant test cases. To be on
the safe side, he starts the regression and system tests.

Now he must wait for the test run

Since an extensive test set has already been implemented, the test run takes
10 hours. Therefore, Bernd cannot get to know whether everything works, until
the next day. The following morning, he realizes that some of the tests failed
overnight again. Once again, the analysis becomes complicated and this time, it
takes the entire morning to get completed. The result is a previously undetected
malfunction of the legacy back-end component.

Why is the problem in the legacy code of all things?

In this case, the problem concerns that one legacy component. It is hardly
documented and tested, and its developers are, of course, not available any-
more. The component should have been transformed or migrated long ago.
This will now become a very lengthy task.

For most software developers
not just grey theory

3
AI4T – From research to reality

© 2020 Nagarro

Only the tests themselves are automated

For most software developers, the above-mentioned situation is not just
grey theory. Test automation undoubtedly helps to increase software
quality. Without it, the error in the back-end component (in our previous-
ly described scenario) would have remained undetected. Nevertheless,
many processes around test automation are still manual. To master these
and similar challenges in the future, our vision is to push automation across
most of the test process. Our goal is not to replace humans but to get rid
of most of the boring and repetitive tasks and to focus on improving the
overall quality of the application even further.

Fig. 1: Automated test execution is only a small part of the test life cycle. The remaining steps are mostly still manual and recurring tasks .

The vision: A highly automated test life cycle

In 2019, Nagarro collaborated with the Vienna University of Applied
Sciences to launch a research project called “AI4T - Advanced Intelligence
for Testing”, funded by the Austrian Research Promotion Agency (FFG).
Managed by Nagarro’s Accelerated Quality and Test Engineering global
business unit, the project aims to use machine learning and artificial intelli-
gence to move towards the vision of a highly automated test life cycle.

In the very first year of the research project, four approaches have been
developed that could support Tom and Bernd, the protagonists in our
story (and of course, many testers & software developers) in their daily
work. Let us discuss each use case in detail.

Test Design

Impact & Risk
Analysis

Reporting,
Analysis &

Defects

Test Selection
& Planning

Automated

Not yet automated

Test
Execution

4
AI4T – From research to reality

© 2020 Nagarro

1. Smart Test Selection

Automated test cases are directly proportional to the complexity and
scope of applications and systems. Higher the complexity and scope of
applications and systems, higher the number of automated test cases. A
complete test run of the full test set easily takes a few hours and is, there-
fore, too time-consuming for every small change or iteration.

A few years ago, this was still a luxury problem. But today, we are experi-
encing such situations much more often. A subset of these tests is usually
performed as smoke tests before each commit to the master branch.
The challenge is to select the relevant tests from the pool to find the right
balance between the test coverage, significance of the results, and the
test throughput time. However, if only a few tests are performed, there is a
risk of overlooking errors. If the test takes too long, this leads to unwanted
waiting time.

Smart Test Selection answers which subset of the test cases must be exe-
cuted within a limited runtime. These selected test cases should detect all
errors which would occur in a full run of the test suite. How do we achieve
this?

AI methods are used to analyze the characteristics of the past test runs,
and a subset of the test cases is selected from this data as per the follow-
ing considerations:

• Test cases that have frequently failed in the past are selected more
 frequently.
• Test cases that have not been executed for a long time are more likely
 to be selected.
• Test cases that are relevant to the changes at hand are more likely
 to be selected.
• Test cases that have a long runtime are less likely to be selected.

The selected subset of test cases must have a full test coverage in the tar-
get area that is similar to the complete test suite. Other metrics such as the
age of the test case, frequency of changes to the test case, the validity of
the test case, and more can also be considered.

These factors are weighed by using intelligent models, and a subset of test
cases is selected. With this framework, suitable selections of test cases can
now be chosen for a short smoke test as well as for a detailed but time-
limited nightly run.

In this procedure, sometimes it is important to also prioritize tests that
have not been executed in the test runs in a while, even if they are not very
relevant to the current situation. This will ensure that these test cases do
not disappear from the radar over time and that there are no test gaps.

Limited runtime and
still detect all errors

5
AI4T – From research to reality

© 2020 Nagarro

2. Self-Healing Test Automation

The importance of regular maintenance and service effort required in au-
tomated test cases is often underestimated. Modifications to the code and
changes to the runtime environment, external interfaces, or the system
configuration can influence previously automated test cases. For exam-
ple, renaming a GUI button or a well-intentioned correction in the code
quickly leads to an apparent error. It is only after thorough analysis, that it
becomes evident later that this was a “false positive” due to it being a test
case that no longer matches the code and not an error in the product itself.

Self-Healing Test Automation deals with the question of how test cases can
be (semi-)automatically adapted in case of changes in the source code.
Thus, the test cases are kept in sync and maintained automatically, even
as the manual effort of adapting the test cases is significantly reduced.
Simple UI changes can often even be changed completely automatically.
For more complex changes, show the programmer the changes and have
him/her confirm them.

The process flow of a self-healing solution, which corrects for example: UI
components, is as follows:

• Monitor:
 The test flow is monitored and data about the test cases and UI components
 is continuously collected.
• Detect:
 If a test case fails, it is detected immediately.
• Analyse:
 The analysis starts to see if the cause of the error can be corrected
 automatically. Intelligent algorithms are used to determine whether the
 error is caused by a moved and/or renamed UI element.
• Heal:
 If this is the case, the new element identifiers are automatically transferred to the
 test case and saved for future runs as well. Of course, the tester is informed of
 that change to be able to audit it or reject it post-hoc.

Technologically, this problem can be solved with AI-based methods such
as Graph Matching. This involves comparing the original UI graph with
the new UI graph. The most likely UI element in the new graph is selected
based on the position, the name or the text descriptions. If several simi-
larly probable UI components come into question, the user is notified to
choose from the various options.

3. Automatic Fail Analysis

Large software applications produce multiple log files with many entries
so that in case of an error, its exact cause can be traced. However, this
process is quite time-consuming and often, it is difficult to find the actual
root cause.

Automatically adapt test
cases in the source code in
case of changes.

6
AI4T – From research to reality

© 2020 Nagarro

Many programmers use simple heuristics such as searching for terms like
‘error’ or ‘exception’. The real reason for the error is often not directly
visible from the error message but is hidden in earlier log entries. When
test cases fail, it may well be that only a few log entries really point to an er-
ror and many others only happen because of subsequent errors. Another
reason could be that there are already known errors that occur repeatedly
due to further development. This is where Intelligent Fail Analysis can help.

Intelligent Fail Analysis deals with methods to extract the actual root cause
of the error from log entries. For this purpose, we can leverage machine
learning, which provides many algorithms and procedures to do so.

In our AI4T research project, we investigated clustering failed test execu-
tion results. The idea behind this is that development teams classify failed
test runs into meaningful categories, based on the log entries produced
(either by the test automation or by the target systems or both). The choice
of categories depends a lot on the application and use case.

Categorization can be done, for example, by areas of the application or by
layers (e.g. database errors, UI errors) or by the importance of the error.
After a period of manual annotation by developers, these categories are
then automatically assigned by a system using machine learning. Targeted
feedback from the developers on the suggestions can help AI learn more
with each additional test run. Over time, this assignment is improved con-
tinuously.

Therefore, only previously unencountered failure types and representa-
tives for the individual categories need to be manually investigated, thus
reducing the testing effort considerably. The effort can be further reduced
by a smart visualization and targeted aggregation of information based on
the error type. For instance, in the case of a database-related failure, the
tester can be immediately shown log files for related interfaces without
having to first search for them manually.

4. Smart Refactoring

From simply being an initial idea to becoming part of the application or
system, it is common for prototypes and temporary solutions to uninten-
tionally find their way into the finished product. Sometimes, as victims of
their success, they remain there for eternity. The resulting ‘impure’ code
is then carried through the years as “technical debt”. The emergence of
new technologies, methodologies, and paradigms makes legacy code
more painful, as new paradigms need to be introduced without breaking
existing functionality. Although workarounds, adapters, or the next mid-
dleware promise quick and easy support, these ultimately contribute to a
fragmented ecosystem, increase the complexity of the overall system, and
reduce its maintainability at the same time.

Smart refactoring is defined as a process that changes software code, that
does not alter its external functionality and improves the internal struc-
ture. This improvement targets certain aspects of code quality directly to
increase the maintainability and testability of the code.

Extract the actual root cause
of errors from log entries

Improve code quality
and increase code
maintainability

7
AI4T – From research to reality

© 2020 Nagarro

Traditional Smart Refactoring analyzes the source code by using heu-
ristic methods and applies established design patterns to restructure it.
Machine learning methods can help in this process at many points. One
approach, for example, is to use machine learning to learn from hundreds
of open source projects when such design patterns are applied in practice.
In this way, we can create a machine learning model that only suggests
changes that have been implemented similarly in the same situations by
experienced programmers in numerous open-source projects.

.

First successes and promising prospects

Coming back to our original scenario, the four AI4T use cases described
above can be applied to our example of Tom and Bernd: Bernd would not
have had to wait 10 hours to get his test results – with the help of Smart
Test Selection. It would also have helped Tom if his redesign of the UI had
been automatically recognized and if the test cases could have adapted
themselves to the new components. Thanks to Intelligent Fail Analysis, it
would have been immediately clear that it was a UI error and one of them
had to take care of it. And finally, Smart Refactoring could have avoided the
scenario ending with a legacy component that would have made trouble-
shooting extremely difficult. The benefits of AI4T are clear: lesser time and
increased productivity for Tom, Bernd, and their team!

The results of the research project, after only its first year, show that many
aspects around the test lifecycle can be automated in a meaningful way.
We will never be able to replace humans in testing, and this is not even the
goal of AI4T. However, it shows that by using intelligent technologies, many
recurring tasks can be (partially) automated. This gives us that much extra
time to focus on the other complex issues that are more valuable, and – let
us face it – also more fun!

Focus on complex issues that
are more valuable and also
more fun!

About Nagarro
In a changing and evolving world, challenges are
ever more unique and complex. Nagarro helps
to transform, adapt, and build new ways into the
future through a forward thinking, agile and caring
mindset. We excel at digital product engineering
and deliver on our promise of thinking break-
throughs. Today, we are 8,400 experts across 25
countries, forming a Nation of Nagarrians, ready to
help our customers succeed. www.nagarro.com

AI4T – From research to reality
© 2020 Nagarro

Jan Noessner is an Artificial Intelligence and
Machine Learning expert at Nagarro. He has
led numerous machine learning and data inte-
gration projects in various companies.

Matthias Wuerthele is a Software Test Con-
sultant at Nagarro. He has over eight years of
experience in IT project management and has
successfully managed numerous test projects.

About the authors

Kontakt:
aqt@nagarro.com
www.nagarro.com/AI4T

https://www.nagarro.com
mailto:aqt%40nagarro.com?subject=AI4T
http://www.nagarro.com/AI4T

